Thermal Stability

Foam cores are exposed to high temperatures, be it during the lamination process or in service. The influence of temperature on the mechanical properties is a key performance indicator.

www.armacell-core-foams.com
ArmaPET™

THERMAL STABILITY

Too high temperatures can have a negative effect on the dimensional stability and create a creep effect of the core material. This could lead to deformation of the laminated structure and ultimately to its failure.

ArmaPET Struct exhibits a glass transition temperature (Tg) close to +75°C / 176°F, and normally foam cores cannot be used at much higher temperatures than their Tg. However, crystallization in PET-based foam cores produces a crystalline structure that will act as a static, non-movable system until melting begins in the crystalline phase at about +240°C / 464°F (melting point Tm). It takes hours to melt all crystalline structures at temperatures of +180°C / 356°F while melting is rapid at +240°C / 444°F. This allows for a wide range of processing temperatures for ArmaPET Struct. At a temperature of e.g. +150°C / 302°F, a process time of days is possible; a temperature of +180°C / 356°F, instead, allows only short process cycles of a couple of hours.

Most other foam cores such as crosslinked PVC cores do not exhibit crystalline structure, their technical performance data changes dramatically above the Tg (for PVC core at +84° to 85°C / 183° to 185°F), typically mechanical properties will deteriorate with increasing temperatures. Cross linked PVC will show a better performance than linear PVC, but is still inferior to PET and it cannot recover once it has been heated above this critical temperature. Standard PVC core cannot be processed above +90°C / 194°F.

High temperature PVC core can be processed up to +130°C but only for very short duration as deterioration will begin when exceeding the Tg.

MECHANICAL PROPERTIES AS A FUNCTION OF TEMPERATURE

All materials are more or less affected by the ambient temperature. Polymer materials such as foam cores tend to be more sensitive than conventional engineering materials, wood or metals. Therefore it is crucial that the core material is evaluated in the temperature it is supposed to be processed and operated within.

ArmaPET Struct softens, strength and stiffness decreases, when heated just as all other foam cores but more slowly due to its crystalline structure allowing a wider operating and processing window than most other. In the same way ArmaPET Struct stiffens and gets stronger when temperature decreases but also loses a bit of ductility. This is in line with other polymer materials. As all mechanical properties are linked to each other they will have the same general behaviour when temperatures change.

The property that is easiest to test for different temperatures, from hot to cold, is the compression properties. Compression samples do not rely on bonding the specimens to the backing plates as for tensile of shear tests, removing the influence from the bonding adhesive that in turn is temperature sensitive. Therefore compression testing has been used to characterise the mechanical properties for ArmaPET Struct according to ISO 844.

The compression strength and modulus for ArmaPET Struct and standard PVC foam core as a function of temperature is presented in the graphs figure 1-2.

![Relative Compressive Strength vs. Temperature](image1)

![Relative Compressive Modulus vs. Temperature](image2)

There are two areas of more interest for ArmaPET Struct. The first one comes after exceeding the Tg (+80° to +100°C / 176° to 212°F), the core loses mechanical properties more rapidly until the crystalline network provides a cushion effect. The second one is above +180°C / 356°F, when the crystalline network also starts to melt and the core softens even further to the point where it can be thermoformed at around +200°C / 392°F.

PROCESSING AT ELEVATED TEMPERATURE

When processing foam cores at elevated temperatures (close to or above their Tg) you always have to take into account the combination of processing time, temperature and pressure together with the density (compression strength) of the core to reach a good result. The strength properties retained for ArmaPET Struct are e.g. 34% at +120°C / 248°F and around 20% at +180°C / 356°F. This might seem low but it will allow a processing time with minor dimensional changes at full vacuum according to figure 3-5.

Generally the core will shrink slightly in thickness but the values stated can be taken as a worst case scenario as these samples have been allowed to move unrestricted. Normally this is not the case and preventing in-plane expansion will also minimize the thickness shrinkage.

The up going trend for some of the densities at +180°C / 356°F and 2 hours processing time can be explained as follows. It is simply the gas in the cells that try to expand when heated and resist the shrinkage that take place after the gas diffuses out. This phenomenon can be seen with all closed cell foam cores at certain temperatures. After the gas diffuses out the general thickness reduction trend is resumed with longer time.
AVOIDING CREEP EFFECTS

All polymer materials are subjected to creep behaviour if loaded at high levels for longer times. At elevated temperatures, i.e. during processing, this can be accentuated as the core softens. This is of course depending on the combination of processing time, temperature and pressure together with the density (compression strength) of the core. In order to avoid creep problems when processing, as a rule of thumb, you require a safety factor of 3 on the compression strength of the core at the temperature in question.

For better understand we use the following simplified calculation example. We assume that the foam core has to stand a design pressure of 0.75 Mpa during the processing:

// Pre-preg processing
// at 2.5 bar
// and +100°C / 212°F

We want to check if ArmaPET Struct GR115 with nominal compression strength of 1.8 MPa at room temperature is up to the task. From figure 2 [page 3] we know that the strength retention of ArmaPET Struct at +100°C / 212°F is just above 40% → 0.4 * 1.8 = 0.72 MPa.

In our sample the pressure applied to the core is 2.5 bar which equals to the 0.25 MPa. Introducing the safety factor of 3 that equals 0.25 * 3 = 0.75 MPa.

The design pressure of 0.75 MPa is higher than the nominal compression strength of ArmaPET Struct GR115 of 0.72 MPa at +100°C / 212°F. Creep problems are to expect, unless the processing time can be kept short.

In that case we recommend you to check a higher density. In our product range one level up in density means ArmaPET Struct GR135 with nominal compression strength of 2.3 MPa at room temperature. At +100°C / 212°F that equals to 0.4 * 2.3 = 0.92 MPa.

ArmaPET Struct GR135 exceeds the design pressure and creep is probably not an issue.

Processing conditions, such as pressure, time and maximum process temperature, is not defined to a standard but based on empirical knowledge and testing. Any stated value is for guidance only. The final combination of processing parameters and ArmaPET Struct material choice has to be tested.

Example: pre-preg processing at 2.5 bar and +100°C / 212°F with the design pressure of 0.75 MPa.

<table>
<thead>
<tr>
<th>Compression Strength</th>
<th>Strength Retention</th>
<th>Shrinkage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5 bar at +100°C / 212°F</td>
<td>Safety Factor = 3</td>
<td>0.25 * 3 = 0.75 MPa</td>
</tr>
<tr>
<td>GR115 = 1.8 MPa</td>
<td>40%</td>
<td>→ 0.4 * 1.8 = 0.72 MPa (N.O.K.)</td>
</tr>
<tr>
<td>GR135 = 2.3 MPa</td>
<td>40%</td>
<td>→ 0.4 * 2.3 = 0.92 MPa (O.K.)</td>
</tr>
</tbody>
</table>

Processing time of 2 hours

Processing time of 24 hours

Processing time of 48 hours

Figure 3: Change in thickness as a function of temperature and density at full vacuum for 2 hours at 1 bar / 14.5 psi.

Figure 4: Change in thickness as function of temperature and density at full vacuum for 24 hours at 1 bar / 14.5 psi.

Figure 5: Change in thickness as a function of temperature and density at full vacuum for 48 hours at 1 bar / 14.5 psi.
ABOUT ARMACELL

As the inventors of flexible foam for equipment insulation and a leading provider of engineered foams, Armacell develops innovative and safe thermal, acoustic and mechanical solutions that create sustainable value for its customers. Armacell’s products significantly contribute to global energy efficiency making a difference around the world every day. With 3,135 employees and 24 production plants in 16 countries, the company operates two main businesses, Advanced Insulation and Engineered Foams. Armacell focuses on insulation materials for technical equipment, high-performance foams for high-tech and lightweight applications and next generation aerogel blanket technology.

For more company information, please visit:
www.armacell.com

For product information, please visit:
www.armacell-core-foams.com